If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6z^2+15z=0
a = 6; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·6·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*6}=\frac{-30}{12} =-2+1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*6}=\frac{0}{12} =0 $
| 5/x=9/14 | | -6-3c=-10 | | 90=24+11+x | | -6+2(-6x-7)=-176 | | 19-16h=-17-18h | | -6-13c=-10 | | (5x+7)-(2x-3)=58 | | -6=-1-13v | | 4x+19=6x+13 | | -3x-2(-6x+11)=77 | | -6=-1=13v | | y+4/5=8+3/4 | | 2(7y+5)-8y=-2 | | 15x+21=-111 | | 2(4-2)-5=-2(x+5)+8x | | -19d-13=-20d | | 4x-2x+4=x+ | | -6z+6=-8z-8 | | 8.6-0.9x=24.9 | | 2.13x+5.69=1.37x-1.52 | | -7d=-8d+6 | | -10k+9=-5k-10k-6 | | 112-y=242 | | -5x+6=-11 | | 1-7w=3w-9 | | 3x+1=-6x+3 | | -5-6r=-7r | | v-3/5=1/2 | | 23=x/3+17 | | v-3/5=3 | | 10m+6=8m-6 | | v-3/5=31/2 |